35,731 research outputs found

    Magnetic and Electronic Phase Diagram and Superconductivity in the Organic Superconductors k-(BEDT-TTF)2X

    Get PDF
    The magnetic susceptibility of the organic superconductors κ\kappa-(h8 or d8-ET)2_{2}XX, X=X = Cu(NCS)2_{2} and Cu[N(CN)2_{2}]Br has been studied. A metallic phase below T=T^{*} = 37 \sim 38 K for X=X = Cu[N(CN)2_{2}]Br and 46 \sim 50 K for X=X = Cu(NCS)2_{2} has an anisotropic temperature dependence of the susceptibility and the charge transport. Partial charge-density-wave or charge fluctuation is expected to coexist with the metallic phase instead of the large antiferromagnetic fluctuation above TT^{*}. The phase diagram and the superconductivity of κ\kappa-(ET)2_{2}XX are discussed in connection with this phase.Comment: 5 pages, 4figures, REVTeX, references are corrected, accepted for pubication in Phys. Rev.

    Restrictions of generalized Verma modules to symmetric pairs

    Full text link
    We initiate a new line of investigation on branching problems for generalized Verma modules with respect to complex reductive symmetric pairs (g,k). Here we note that Verma modules of g may not contain any simple module when restricted to a reductive subalgebra k in general. In this article, using the geometry of K_C orbits on the generalized flag variety G_C/P_C, we give a necessary and sufficient condition on the triple (g,k, p) such that the restriction X|_k always contains simple k-modules for any g-module XX lying in the parabolic BGG category O^p attached to a parabolic subalgebra p of g. Formulas are derived for the Gelfand-Kirillov dimension of any simple k-module occurring in a simple generalized Verma module of g. We then prove that the restriction X|_k is multiplicity-free for any generic g-module X \in O if and only if (g,k) is isomorphic to a direct sum of (A_n,A_{n-1}), (B_n,D_n), or (D_{n+1},B_n). We also see that the restriction X|_k is multiplicity-free for any symmetric pair (g, k) and any parabolic subalgebra p with abelian nilradical and for any generic g-module X \in O^p. Explicit branching laws are also presented.Comment: 31 pages, To appear in Transformation Group

    Electron localization near Mott transition in organic superconductor κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2]_{2}]Br

    Full text link
    The effect of disorder on the electronic properties near the Mott transition is studied in an organic superconductor κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br, which is systematically irradiated by X-ray. We observe that X-ray irradiation causes Anderson-type electron localization due to molecular disorder. The resistivity at low temperatures demonstrates variable range hopping conduction with Coulomb interaction. The experimental results show clearly that the electron localization by disorder is enhanced by the Coulomb interaction near the Mott transition.Comment: 5 pages, 4 figure

    Electron-Transport Properties of Na Nanowires under Applied Bias Voltages

    Full text link
    We present first-principles calculations on electron transport through Na nanowires at finite bias voltages. The nanowire exhibits a nonlinear current-voltage characteristic and negative differential conductance. The latter is explained by the drastic suppression of the transmission peaks which is attributed to the electron transportability of the negatively biased plinth attached to the end of the nanowire. In addition, the finding that a voltage drop preferentially occurs on the negatively biased side of the nanowire is discussed in relation to the electronic structure and conduction.Comment: 4 pages, 6 figure

    Bogoliubov Theory and Lee-Huang-Yang Corrections in Spin-1 and Spin-2 Bose-Einstein Condensates in the Presence of the Quadratic Zeeman Effect

    Full text link
    We develop Bogoliubov theory of spin-1 and spin-2 Bose-Einstein condensates (BECs) in the presence of a quadratic Zeeman effect, and derive the Lee-Huang-Yang (LHY) corrections to the ground-state energy, sound velocity, and quantum depletion. We investigate all the phases of spin-1 and spin-2 BECs that can be realized experimentally. We also examine the stability of each phase against quantum fluctuations and the quadratic Zeeman effect. Furthermore, we discuss a relationship between the number of symmetry generators that are spontaneously broken and that of Nambu-Goldstone (NG) modes. It is found that in the spin-2 nematic phase there are special Bogoliubov modes that have gapless linear dispersion relations but do not belong to the NG modes.Comment: v3: 62 pages, 18 figure
    corecore